CX–4

Cryogenic *Super Low Noise* Amplifier

- Datasheet -

Features:
- Frequency Range 1kHz to 4MHz
- Very High Input Impedance
- Super Low Noise (0.31nV/√Hz @ 1MHz, ~4pF=C\text{IN})
- Operation in strong magnetic fields (6T) and low temperatures down to 4.2 K and even lower

Applications:
- Quantum Transport Effects
- Tuning Forks
- Schottky Noise Measurements
- Single Ion FT-ICR
Introduction

The CX-4 is a highly sensitive voltage preamplifier, intended for low-temperature, low-noise applications. The circuit can be used directly inside a cryogenic vacuum setup. Cryogenic GaAs (Gallium-Arsenide)-FET technology allows for deep-cryogenic operation, even in strong magnetic fields up to several Tesla, as they are present in NMR, FT-ICR or solid state research applications. The amplifier module covers a frequency range of approx. 1kHz....4MHz and has very high input impedance. The latter is suited specially for sensing induced image currents (slow ions, tuning forks) or for semiconductor noise measurements. The ultra-low input voltage noise around 310pV/√Hz around 1MHz is quite outstanding and represents the state-of-the art technology for high-impedance amplifiers.

The module is delivered as printboard-stack with aluminium lids and comes together with a mating room temperature biasing controller. Bias- and signal lines can be connected by normal soft-soldering procedures by the user. The device is available as 1- or 2-channel version.

Application Example

Fig. 1: Typical Application: High Impedance Signal Detection in FT-ICR Cells

Solder Connections

Fig. 2: Pinout / Solder Pad Connections, 2 channel version, and external B-field orientation
Electrostatic Sensitivity

This device can be **damaged** by ESD (Electrostatic Discharge). It is **strongly recommended** to handle the device with appropriate precaution. Failure to observe proper handling and installation procedures can cause serious damage. This ESD damage can range from subtle performance degradation to complete device failure.

Practical Hints:
Whenever the device is picked up by hand, ensure that the ground pin or aluminium case is touched first before touching any other pin. Touching any other pin than ground first, may destroy this device. Similar precaution has to be applied when changing the location of the device: Most important the destinations ground has to be on the same potential as the devices ground (ground balancing). Therefore connect both grounds first (using a resistor around 100kOhm, or simply by hand without gloves) before making any other connection or changing the amplifier position. Failure to perform ground balancing may easily lead to severe irreversible damage of the device. Always ensure to take thorough measures to avoid static charges building up in the vicinity of this device or laboratory equipment connected to it.

Connection to Room Temperature Biasing Unit

As indicated in the figure above, the device is connected to its mating room temperature controller through two biasing lines (G1A, G1B) and the output signal lines (coaxial lines preferred). G1A and G1B are negative supplies (typical values for G1A, G1B are -25mV at cryogenic temperatures) and will be regulated by the Biasing Unit.

Absolute Maximum Ratings

Note: Stress above these ratings may cause permanent damage or degradation of device performance. Exceeding these conditions for extended periods may also degrade device reliability.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Limits</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>neg. Supply Voltage G1A/B</td>
<td>+1.0V</td>
<td>-10V</td>
</tr>
<tr>
<td>Input Voltage absolute value (AC+DC) AC</td>
<td>100 V pk vs. GND, 3V pp, f = 0 ... 5MHz</td>
<td>derating inversely proportional with frequency above 5MHz</td>
</tr>
<tr>
<td>Input Current</td>
<td>40mAeff</td>
<td>continuous current through protection circuitry</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>-1.2V</td>
<td>+5.3V</td>
</tr>
<tr>
<td>Under normal conditions no voltage source must be applied to the outputs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>3.5K</td>
<td>125°C</td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>85% @ 40°C</td>
<td></td>
</tr>
<tr>
<td>Cool-down Rate, Heating Rate</td>
<td>+/- 20K / minute</td>
<td>Care has to be taken in the cool down and warm up phases. A sudden drop into cryogenic liquids may destroy the device.</td>
</tr>
</tbody>
</table>

Table 1: Absolute Maximum Ratings

Fig. 3 Cabling to Room Temperature Biasing Unit A3-5 (2-channel version)
Cleaning and Baking

The CX-4 device may be carefully purged from organic attachments by rinsing with a mild solvent like ethanol or isopropanol. It may be also dipped for a while into these solvents. Stronger solvents like acetone are not recommended. Due to sensitive internal parts, in no case pressurised air or pressurised solvents must be guided into the inner parts of the device. Baking is possible up to 125°C, and should not last longer than 48 hours prior to use at cryogenic temperatures.

Characteristic Data and Operating Parameters Cryogenic Amplifier CX-4 in conjunction with mating Room Temperature Biasing Unit A3-5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>typical Value</th>
<th>Remarks/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq. Range @ 4.2K for ±3dB deviation</td>
<td>1 kHz...4 MHz (intrinsic range)</td>
<td>±3dB range 5 kHz ... 4MHz in conjunction with A3-5 controller</td>
</tr>
<tr>
<td>Gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linear voltage gain @300K</td>
<td>x 40 V/V ± 30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x 90 V/V ± 30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x 190 V/V ± 30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x 380 V/V ± 30%</td>
<td></td>
</tr>
<tr>
<td>linear voltage gain @ 4.2K</td>
<td>x 250 V/V ± 10%</td>
<td>f = 1MHz</td>
</tr>
<tr>
<td></td>
<td>x 600 V/V ± 10%</td>
<td>over-all amplification including biasing controller, on 50 Ohm load</td>
</tr>
<tr>
<td></td>
<td>x 1200 V/V ± 10%</td>
<td>4 amplification steps are available</td>
</tr>
<tr>
<td></td>
<td>x 2400 V/V ± 10%</td>
<td></td>
</tr>
<tr>
<td>Gain Mismatch between both cannels</td>
<td>typ. ± 5%</td>
<td>T = 4.2K, f = 100kHz ... 1MHz</td>
</tr>
<tr>
<td>Input Impedance vs. GND at either input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC, T = 4.2K ... 300K</td>
<td>> 40MΩ</td>
<td>f < 1kHz</td>
</tr>
<tr>
<td>AC, 300K</td>
<td>capacitively coupled >1MΩ</td>
<td>f < 100kHz</td>
</tr>
<tr>
<td>AC, 4.2K</td>
<td>capacitively coupled ≥ 15MΩ</td>
<td>T = 4.2K ... 300K</td>
</tr>
<tr>
<td>input capacitance vs. GND</td>
<td>4.2pF ±1.0pF</td>
<td></td>
</tr>
<tr>
<td>Dynamic Output Impedance cryogenic stage @ 4.2K max. AC Output Power</td>
<td>4 kΩ ± 25%</td>
<td>f = 100kHz</td>
</tr>
<tr>
<td>Output Impedance Biasing Unit max. AC Output Power</td>
<td>50 Ω ± 10%</td>
<td>f = 50kHz ... 4MHz</td>
</tr>
<tr>
<td>Input Noise 300K voltage noise density</td>
<td>12 nV/√Hz</td>
<td>f = 100kHz</td>
</tr>
<tr>
<td></td>
<td>6 nV/√Hz</td>
<td>500kHz</td>
</tr>
<tr>
<td></td>
<td>3.3 nV/√Hz</td>
<td>1MHz</td>
</tr>
<tr>
<td></td>
<td>3.0 nV/√Hz</td>
<td>4MHz</td>
</tr>
<tr>
<td>4.2K voltage noise density</td>
<td>0.6 nV/√Hz</td>
<td>f = 100kHz</td>
</tr>
<tr>
<td></td>
<td>0.35 nV/√Hz</td>
<td>500kHz</td>
</tr>
<tr>
<td></td>
<td>0.31 nV/√Hz</td>
<td>1MHz</td>
</tr>
<tr>
<td></td>
<td>0.5 nV/√Hz</td>
<td>4MHz</td>
</tr>
<tr>
<td>current noise density</td>
<td>17 fA/√Hz, T = 4K</td>
<td>f = 100 kHz</td>
</tr>
<tr>
<td>Operating voltages positive supply voltage on signal line</td>
<td>+0.2 V</td>
<td>should be provided by room temperatur biasing unit</td>
</tr>
<tr>
<td>G1A, G1B negative supply voltage</td>
<td>-0.1V to -3.0 V @ 300 K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-25mV @ 4.2 K</td>
<td></td>
</tr>
</tbody>
</table>
Supply Currents @ 300K...4.2K
positive supply on signal line
negative supply current G1A/B
1.6 mA each channel
< 30 µA

Operating Temperatures
T = 4.2 K...70K and 300 K
The device is primarily designed for
low temperature applications

Applicable external
magnetic field B
B = 0 to 6T
external field must be in parallel to the
long-side of the device (+/-5°) at fields
above B = 0.1T and oriented like
shown in fig. 2 (not reversed)

Magnetic Properties
Device consists mostly of non-
magnetic materials.
Spurious amounts of ferromagnetic
substances < 5 x 10^-3 gr. are possible
For use with FT-ICR cells, it is
recommended to locate the device
min. 5cm away from the ion trap/FT-
ICR cell structure in order to avoid
magnetic disturbance

Size Cryogenic Unit
1-ch.
40.5mm x 16mm x 8.9mm
(size cryo unit)
54.5mm x 21.2mm x 8.9mm
(approx. 210mm x 65mm x 34 mm)

Size Cryogenic Unit
2-ch.
Room Temperature Biasing Unit
Output +/-5V on Lemo Connector
3-pole 0B-style
Requires 230Vac supply (max. 5W)
Attention: the external B-field into
which the mains adaptor is placed
must not exceed
B = 10mT to prevent damage or fire
hazard.

Required External Circuitry
The cryogenic preamplifier requires negative biasing lines, which should be adjusted to have the
device at stable working conditions. The room temperature controller (e.g. Type A3-5), which is
provided along with the cryogenic amplifier regulates these bias lines (G1A for channel A, G1B for
channel B) to be around -25mV at 4.2K environmental temperature, by means of an automatic PID
regulation loop. For testing purposes one can also disable the regulation and set values manually
(optional knob on front side of amplifier). Increasing (making more positive) these values leads to an
increase of current consumption, which is normally around 1.6mA each channel and vice versa.
The biasing controller of the CX-4 serves also as a tool for error finding and debugging. The controller
provides further AC amplification in discrete step, normally set to x 250 V/V, x 600 V/V, x 1200 V/V or
x 2400 V/V of voltage amplification at 50 Ohm load (twice as much on high impedance load). In case
of two channels it supports also a differential operation, building the signal difference between the two
channels.

Input A
Input B

Figure: 4: the roomtemperature controller indicates the status of the cryo amplifier and allows for setting the
overall-amplification factor. The stated values of amplification factors refer to cryogenic operation.

Figure 5: Pinout of connector socket (Lemo 0B type) at the side of the
roomtemperature controller for providing bias lines to the cryogenic amplifier.
A connection cable is provided by the manufacturer, to connect this Biasing output socket to a vacuum flange towards the cryogenic amplifier. The open ends of this cable should be mounted in an electrically shielded way to corresponding feedthrough pins. The 3 open wires are G1A (brown), GND (white) and G1B (green).

![Block diagram of 2-channel roomtemperature controller](image)

Figure 6: Block diagram of 2-channel roomtemperature controller

![Schematic diagram of the analog signal amplifier circuitry inside the roomtemperature controller](image)

Figure 7: Schematic diagram of the analog signal amplifier circuitry inside the roomtemperature controller. The mode switch \text{S}_{\text{Dual/Differential}} allows for choosing between dual-channel or differential operation

Monitoring section

This section consists mainly of a microcontroller and an attached LED (light emitting diode) status display. The microcontroller makes use of instrumentation amplifiers inside the supply unit and observes the biasing currents and voltages once a cryogenic amplifier is connected. This information is processed and the results are displayed on a LED-display, such that an overview of the cryogenic amplifier’s status is obtained. Eventual problems in the cryogenic region are therefore easier to locate.

![Monitoring section](image)

Figure 8:

LEDs indicate the status of biasing lines, assisting to find problems in the cryogenic region. The bottom row represents the amplification factor, and the amplification selection switch. Pressing the switch increases the amplification factor, a long press resets to the minimum value.

The threshold levels, upon which the LEDs change their status, are set by default (software programming) to the values stated in the Appendix. In normal operation all light up green.
Connections inside Vacuum

Biasing Lines
The 2 Biasing lines GA1 and G2B carry only minor currents and can therefor be implemented as thin wires, e.g. made of Constantan™ or Manganin™, to ensure low thermal conductivity to avoid thermal load on the cryogenic part of a setup.

AC connections to Room Temperature
The signal connection from cryogenic to room temperature (Output A, Output B) should be implemented as short coaxial lines, in order to minimize external interference and the possibility of unwanted feedback from the output to the high-impedance input. Cable impedance of the room temperature connection is not critical, unless the cable length greatly exceeds ~2m. A cryogenic low-capacitance cable is preferable.

Input Connections and Grounding, Risk of Self-Oscillations
Using high impedance amplifiers, such as the CX-4, requires proper Grounding and Shielding at the input side. A thorough grounding and shielding is essential to maintain good device performance and low noise characteristics, and to avoid the creation of parasitic oscillations. Typical RF (radio frequency) -design rules for proper grounding and shielding apply here, even though the upper limit of the frequency range just barely reaches the HF (high frequency) regime. To ensure a “clean” electrical environment provide good ground connections especially around the amplifier input. The grounding hole at the input (see subsequent photo) may serve as central connection point, to which the signal ground may be connected. All lines from the signal source to the amplifiers inputs should be kept as short as possible and of low inductance-style.

Figure 9:
Illustration of connecting a sample to the amplifiers inputs. Very short silver-plated wires represent the electrical signal connection while a brass screw establishes a tight mechanical GND contact to a well-conducting copper substrate. In the cold state the brass will keep tight, improving the GND and thermal connection.

Please note that insufficient grounding or shielding around the signal source, may lead to a considerably increased noise level and furthermore increases the risk of self-oscillations. These uncontrollable oscillations appear typically at MHz- frequencies and are normally an indication of insufficient shielding at the input. Also note that the supply lines of the preamplifier should be free of noise before reaching this device. In noisy environments this can be achieved by filtering the voltages through RC lowpasses, consisting of R (approx. 10kΩ to 100kΩ for G1A/B) and C of approx. 10nF to 100nF to GND.
External Magnetic Field

In case a static external magnetic field is applied (e.g. in FT-ICR setups) the amplifier must be oriented like shown in figure 2, i.e. with the long side parallel to the external field, max. 5 degrees deviation. Also the polarity is important and thus the field orientation matters. This applies for magnetic fields higher than 0.1T. Figure 2 refers to the usual convention of polarity definition, i.e. the field line arrows point from a magnetic north pole to a magnetic south pole.

Input Circuitry

The subsequent figure illustrates the input protection circuitry for each input. DC blocking capacitors are provided in order to maintain a reasonable amount of admissible DC offset voltage being applied to the inputs without harm. These blocking capacitors C_{blocking} are located outside the upper aluminium housing (see figure) and can be bridged / removed in favour of zero-ohm resistors for an optimised noise figure or in case a different coupling scheme is required. In case they are kept in place, the maximum allowed offset voltage at each input is +/-100V versus GND.

The limited pulse capability of maximum 1A_{pk} for less than 10ms duration has to be kept in mind, which is restricted by the maximum possible current through antiparallel protection diodes (see fig. 10a). This matters especially if attached circuitry is operated in a switched or pulsed mode, or exposed to radio frequency bursts (like in FT-ICR or NMR experiments).

![Figure: 10a](image)

In case the blocking capacitors are bridged, the input ESD-protection diodes limit the maximum voltage to about +/-750mV. Behind this protection circuitry the subsequent amplifier stages follow capacitively (AC) coupled.

Thermal Anchoring

Mounting the device into a cryogenic setup demands for a good thermal coupling, which is essential to achieve the specified performance of the CX-4 series amplifiers at low temperatures. The substrate, on which the circuitry is placed, should be connected by the user to an appropriate heat sink or cold finger. It is recommended to use a high conductance thermal agent like “Apiezon N” to provide a good heat flow between the adjacent surfaces (apply only as very thin layer, to bridge possible vacuum gaps). We recommend to use one of the 3mm-holes for mounting with brass or (preferably) aluminium screws on a cold surface, or cold finger. Using brass or aluminium material is essential, since it will
contract stronger than for instance steel or copper, which have a smaller thermal contraction when getting cold. Note that using stainless steel screws can drastically impair the thermal connection, due to thermal contraction mismatch (connection getting loose) and also low thermal conduction. When mounting the thermal connection, avoid mechanical tension of the remaining parts of the amplifier or other kind of mechanical stress. It is recommended, not to connect both amplifier ends with screws, unless the substrate to connect shows a similar thermal expansion like the amplifiers aluminium (AlMg alloy) housing. Copper or Aluminium substrates serve well in this respect.

Commissioning in a Vacuum or Cryogenic Setup

After cleaning and baking (in case required, see also page 4) the CX-4 device can be mounted and wired up in a cryogenic vacuum chamber. It is very important to connect ground lines first, for ESD reasons. The device may be checked for obvious mounting problems and eventually powered up with appropriate supply voltages (e.g. A3-5 Biasing Unit).

Before power is applied to the device, one should carefully check the cable connections in order to avoid damage or malfunction. With a standard multimeter (DMM) one can perform a quick check of resistances. The following table lists typical terminal values of the amplifier lines versus GND.

<table>
<thead>
<tr>
<th>Line designator or Pad</th>
<th>Resistance vs. GND</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1A, G1B</td>
<td>1.04 MΩ</td>
<td>value slightly differs over 4K-300K range</td>
</tr>
<tr>
<td>Output A, Output B</td>
<td>approx. 75Ω @ 300K approx. 55 Ω @ 4.2K</td>
<td>Since the device output features protection diodes, the value shown on a DMM display depends on the measurement current and voltage in resistance measuring mode.</td>
</tr>
</tbody>
</table>

Table 3: typical resistance values of lines versus GND, measured with standard multimeter.

Cool-Down Procedure and Readjustments

After a complete check of the cabling (using a DMM in Ω-Mode, table above) and in case the latter is correct, one may temporarily power-up the device. The biasing currents on G1A, G1B are in the µA range. The room temperature controller will adjust the voltage on G1A, G1B such that the supply currents on the signal lines are around 1.6mA. During cool down in a cryostat the device must be switched off. The reason are strong offset shifts, which may cause temporary malfunctions otherwise. Please turn the power only on, once the final temperature is reached or temperature is already below 45K. After cooling down one may recheck the resistance of lines to be sure the device is operational.

Note:
During cool-down/warm-up procedures always maintain a temperature rise or decrease of no more than +/-20 degrees Kelvin per minute. Note that exceeding this temperature slew/fall rate may damage the device due to formation of mechanical cracks. Never apply thermal shocks to the device like dipping into a cryogenic liquid.

Cool-Down and Warm-Up Cycles

Care has to be taken in the cool down and warm up phases. A fast drop into cryogenic liquids can damage the device because of excessive mechanical stress, caused by rapid thermal contractions or
expansions. It is strongly recommended to keep the rate of temperature change below +/- 20K / minute. A complete cool down from room temperature into a cryogenic liquid like liquid Nitrogen or liquid Helium should take at least 20 minutes (liquid Helium) or 15 minutes (liquid Nitrogen).

Care has also to be taken, in case the device is brought from the cold state into normal air because of humidity condensing on the cold surfaces. In case the device is still powered up with supply voltages, a water film on the surfaces will lead to immediate destructive galvanic corrosion. It is strongly recommended to let the device dry thoroughly before next operation, eventually using a conventional hair dryer, after the device was brought out of vacuum. Beware of overheating the device in this procedure. The use of so-called “hot air guns” is not allowed, since the latters air temperature easily exceeds 150 deg Celsius, which may lead to rapid overheating and substantial, non-reversible damage of the device. Even using conventional hair dryers, they should be set to minimum heat output and the device temperature carefully monitored in order to never exceed 150 deg. Celsius.

Temperature Check Diode

One of the soldering pads (see figure 2) is internally connected by a silicon diode to GND, by which the temperature of the device can be monitored. The diode should by biased with a electrical current of 5 to 7µA, and will display a voltage of around 0.7V at roomtemperature, 1.05V at 77K and approx. 1.35V at 4.2 Kelvin environmental temperature. The diode is not (explicitely) calibrated, but its voltage serves well to get a coarse estimate of the local temperature and helps finding thermal issues (e.g. heating up of the amplifier because of bad cooling inside a cryostat)

Amplification and Noise Data

![Amplification and Noise Data](image)

Fig. 11: Amplification at Cryogenic Temperature as Function of Frequency, expressed in dB relative to the amplification factor at f = 100kHz. The data set comprises the cryogenic amplifier (at 5.6K) including the biasing section with 50 Ohm load.
Fig. 12: Input Voltage Noise Density at 4.2K in a cryogenic vacuum chamber

Fig. 13: Voltage Input Noise Density as function of ambient temperature at f = 1.5MHz
Geometrical Outline

Figure 14a, b: Outline dimensions 1-channel version and 2-channel version (units: mm)

Appendix

LED Indicator threshold values

<table>
<thead>
<tr>
<th></th>
<th>too low</th>
<th>ok</th>
<th>too high</th>
<th>remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Line A and B</td>
<td>< 0.2V</td>
<td>0.2V … 0.37V</td>
<td>>0.37V</td>
<td></td>
</tr>
<tr>
<td>(monitoring DC level)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Currents</td>
<td>< 1.0mA</td>
<td>1.0mA … 2.0mA</td>
<td>>2.0 mA</td>
<td>currents flow through A3-5 inputs and CX-4 outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: typical DC threshold levels, defining the range in which individual LEDs will lighten up.
Trouble Shooting

In case not all LEDs show green light, there could be the following reasons.

DC level on Output line A or B too low:
- there could be a short from a cryogenic signal output line to GND or
- wrong biasing on the G1A or G1B line or Biasing not connected.

DC level on Output line A or B too high:
- may be caused by a open line (cable towards cryogenic amplifier interrupted and open) or wrong biasing on the G line.
- A missing GND connection (300K-to-cryogenic) could also be the reason.

Supply current too low:
- biasing G too negative (maybe not in ‘Auto-Mode’)
- missing GND connection (300K to cryogenic)

Supply current too high:
- short cut from signal line to GND or short cut from an output to GND
 → disconnect cryogenic amplifier to prevent damage
- biasing G too positive (e.g. during manual operation, PID disabled)
- biasing line G not connected at all or shorted to GND

If one of these error conditions occurs, check carefully all connections, eventually also the nominal resistances of the supply lines to the cryogenic amplifier according to the value listed above. Note that in case the cryogenic amplifier is operated at room temperature, the regulation loop may not lock due to occurrence of leakage currents. This problem will disappear as soon as the amplifier is cooled down substantially below 0°C.